top of page
Search

Slack to Google Chat Spaces

  • Writer: Brian Bloom
    Brian Bloom
  • Jul 9
  • 7 min read

Updated: Aug 6

Skip the $20k Enterprise Bills Our complete Slack to Google Chat migration service starts at 85% less than what the big companies charge for the same result. Migrating from Slack to Google Chat Spaces: A Strategic Guide

Making the leap from Slack to Google Chat Spaces? You're not alone. Whether you're consolidating your Google Workspace tools, reducing subscription costs, or seeking tighter integration with Gmail and Calendar, migrating chat platforms is a significant undertaking that requires careful planning.

The key to a successful migration isn't jumping straight into the technical transfer—it's understanding exactly what you're working with first.


Step 1: Know Your Slack Estate

Before you can migrate anything, you need a comprehensive audit of your current Slack workspace. This means understanding your channels, message volume, user activity patterns, file sharing habits, and conversation history. Flying blind into a migration is a recipe for lost data and frustrated users.

The good news? You can automate this discovery process with a simple Slack bot that will give you the analytics you need to make informed migration decisions.


Building Your Slack Analytics Bot

Here's a Python script that will help you gather comprehensive statistics about your Slack workspace:

python

import json
import time
from datetime import datetime, timedelta
from collections import defaultdict
import os
from slack_sdk import WebClient
from slack_sdk.errors import SlackApiError

class SlackAnalyzer:
    def __init__(self, token):
        self.client = WebClient(token=token)
        self.analytics = {
            'conversations_analyzed': 0,
            'total_messages_analyzed': 0,
            'message_volume_by_period': {
                'last_24_hours': 0,
                'last_7_days': 0,
                'last_30_days': 0,
                'last_90_days': 0,
                'last_year': 0
            },
            'messages_by_hour': defaultdict(int),
            'messages_by_day_of_week': defaultdict(int),
            'top_active_conversations': [],
            'reaction_analytics': defaultdict(int),
            'file_sharing_stats': defaultdict(int),
            'thread_analytics': {
                'total_threads': 0,
                'messages_in_threads': 0,
                'avg_thread_length': 0
            }
        }
    
    def get_all_channels(self):
        """Retrieve all channels in the workspace"""
        try:
            channels = []
            cursor = None
            
            while True:
                response = self.client.conversations_list(
                    limit=100,
                    cursor=cursor,
                    types="public_channel,private_channel"
                )
                channels.extend(response['channels'])
                
                cursor = response.get('response_metadata', {}).get('next_cursor')
                if not cursor:
                    break
                    
            return channels
        except SlackApiError as e:
            print(f"Error fetching channels: {e}")
            return []
    
    def analyze_channel_history(self, channel_id, days_back=90):
        """Analyze message history for a specific channel"""
        try:
            # Calculate timestamp for X days back
            oldest_timestamp = (datetime.now() - timedelta(days=days_back)).timestamp()
            
            messages = []
            cursor = None
            
            while True:
                response = self.client.conversations_history(
                    channel=channel_id,
                    oldest=str(oldest_timestamp),
                    limit=100,
                    cursor=cursor
                )
                
                batch_messages = response['messages']
                messages.extend(batch_messages)
                
                cursor = response.get('response_metadata', {}).get('next_cursor')
                if not cursor:
                    break
                    
                # Rate limiting
                time.sleep(1)
            
            return messages
            
        except SlackApiError as e:
            print(f"Error fetching messages for channel {channel_id}: {e}")
            return []
    
    def process_messages(self, messages):
        """Process messages to extract analytics"""
        now = datetime.now()
        
        for message in messages:
            if 'ts' not in message:
                continue
                
            timestamp = float(message['ts'])
            msg_datetime = datetime.fromtimestamp(timestamp)
            
            # Time period analysis
            hours_ago = (now - msg_datetime).total_seconds() / 3600
            if hours_ago <= 24:
                self.analytics['message_volume_by_period']['last_24_hours'] += 1
            if hours_ago <= 168:  # 7 days
                self.analytics['message_volume_by_period']['last_7_days'] += 1
            if hours_ago <= 720:  # 30 days
                self.analytics['message_volume_by_period']['last_30_days'] += 1
            if hours_ago <= 2160:  # 90 days
                self.analytics['message_volume_by_period']['last_90_days'] += 1
            if hours_ago <= 8760:  # 1 year
                self.analytics['message_volume_by_period']['last_year'] += 1
            
            # Hour and day analysis
            self.analytics['messages_by_hour'][msg_datetime.hour] += 1
            self.analytics['messages_by_day_of_week'][msg_datetime.strftime('%A')] += 1
            
            # Reaction analysis
            if 'reactions' in message:
                for reaction in message['reactions']:
                    self.analytics['reaction_analytics'][reaction['name']] += reaction['count']
            
            # File sharing analysis
            if 'files' in message:
                for file in message['files']:
                    file_type = file.get('filetype', 'unknown')
                    self.analytics['file_sharing_stats'][file_type] += 1
            
            # Thread analysis
            if 'thread_ts' in message:
                self.analytics['thread_analytics']['total_threads'] += 1
                if 'reply_count' in message:
                    self.analytics['thread_analytics']['messages_in_threads'] += message['reply_count']
            
            self.analytics['total_messages_analyzed'] += 1
    
    def analyze_workspace(self, max_channels=10):
        """Run complete workspace analysis"""
        print("🔍 Starting Slack workspace analysis...")
        
        # Get all channels
        channels = self.get_all_channels()
        print(f"📊 Found {len(channels)} channels")
        
        # Analyze top channels by member count
        channels.sort(key=lambda x: x.get('num_members', 0), reverse=True)
        top_channels = channels[:max_channels]
        
        for i, channel in enumerate(top_channels):
            print(f"📈 Analyzing channel {i+1}/{len(top_channels)}: {channel['name']}")
            
            messages = self.analyze_channel_history(channel['id'])
            if messages:
                self.process_messages(messages)
                
                # Store channel-specific data
                channel_data = {
                    'name': channel['name'],
                    'type': 'private_channels' if channel['is_private'] else 'public_channels',
                    'activity_score': len(messages),
                    'total_messages': len(messages),
                    'recent_messages': sum(1 for m in messages if (datetime.now() - datetime.fromtimestamp(float(m['ts']))).days <= 7),
                    'unique_participants': len(set(m.get('user', '') for m in messages if 'user' in m)),
                    'avg_message_length': sum(len(m.get('text', '')) for m in messages) / len(messages) if messages else 0,
                    'last_activity': max(float(m['ts']) for m in messages) if messages else 0
                }
                self.analytics['top_active_conversations'].append(channel_data)
            
            self.analytics['conversations_analyzed'] += 1
        
        # Calculate thread averages
        if self.analytics['thread_analytics']['total_threads'] > 0:
            self.analytics['thread_analytics']['avg_thread_length'] = (
                self.analytics['thread_analytics']['messages_in_threads'] / 
                self.analytics['thread_analytics']['total_threads']
            )
        
        return self.analytics
    
    def export_channel_list(self):
        """Export complete channel list for migration planning"""
        channels = self.get_all_channels()
        
        channel_export = []
        for channel in channels:
            channel_data = {
                'id': channel['id'],
                'name': channel['name'],
                'is_archived': channel.get('is_archived', False),
                'is_private': channel.get('is_private', False),
                'num_members': channel.get('num_members', 0),
                'created': channel.get('created', 0),
                'creator': channel.get('creator', ''),
                'purpose': channel.get('purpose', {}).get('value', ''),
                'topic': channel.get('topic', {}).get('value', '')
            }
            channel_export.append(channel_data)
        
        return channel_export

def main():
    # Set up your Slack bot token
    SLACK_BOT_TOKEN = os.getenv('SLACK_BOT_TOKEN')
    
    if not SLACK_BOT_TOKEN:
        print("❌ Please set SLACK_BOT_TOKEN environment variable")
        return
    
    analyzer = SlackAnalyzer(SLACK_BOT_TOKEN)
    
    # Run analytics
    print("🚀 Running comprehensive Slack analysis...")
    analytics = analyzer.analyze_workspace(max_channels=20)
    
    # Export channel list
    channel_list = analyzer.export_channel_list()
    
    # Save results
    with open('slack_analytics.json', 'w') as f:
        json.dump(analytics, f, indent=2)
    
    with open('slack_channels.json', 'w') as f:
        json.dump(channel_list, f, indent=2)
    
    print("✅ Analysis complete!")
    print(f"📊 Analyzed {analytics['conversations_analyzed']} channels")
    print(f"💬 Found {analytics['total_messages_analyzed']} messages")
    print(f"📁 Exported {len(channel_list)} channel definitions")

if __name__ == "__main__":
    main()

Setting Up Your Analysis Bot

  1. Create a Slack App: Go to api.slack.com/apps and create a new app

  2. Add Bot Permissions: Grant these OAuth scopes:

    • channels:history

    • channels:read

    • groups:history

    • groups:read

    • users:read

  3. Install the App: Install it to your workspace and copy the Bot User OAuth Token

  4. Run the Analysis: Set your token and execute the script

bash

export SLACK_BOT_TOKEN="xoxb-your-bot-token-here"
pip install slack-sdk
python slack_analyzer.py

What This Analysis Reveals

The script will generate two key files:

slack_analytics.json - Runtime statistics including:

  • Message volume trends over time

  • Peak usage hours and days

  • Most active channels and users

  • Reaction usage patterns

  • File sharing statistics

  • Thread conversation patterns

slack_channels.json - Complete channel inventory with:

  • Channel purposes and topics

  • Member counts and activity levels

  • Creation dates and ownership

  • Archive status

Using These Insights for Migration Planning

Armed with this data, you can make strategic decisions about your Google Chat Spaces migration:

🎯 Prioritize Active Channels: Migrate high-activity channels first to minimize user disruption

📅 Time Your Migration: Use peak usage data to schedule migrations during low-activity periods

👥 Plan User Training: Focus training on users in the most active channels

🗂️ Archive Before Migration: Clean up inactive channels before moving to reduce clutter

📊 Set Success Metrics: Use current activity levels as benchmarks for post-migration success

The Bottom Line

A successful Slack to Google Chat Spaces migration starts with understanding your current state. Don't guess at what needs to be moved—measure it. The few hours spent running this analysis will save you weeks of migration headaches and ensure nothing important gets left behind.

Your users will thank you for the thoughtful, data-driven approach, and your migration will be smoother, faster, and more successful.

📖 Coming Next: Look out for our next blog post where we'll dive deep into the actual migration process, including automated channel mapping, user communication templates, and data transfer scripts.

🚀 Need Help With Your Migration?

Don't want to build these scripts from scratch? We've already done the heavy lifting for you. Our team has developed comprehensive, battle-tested migration scripts that can help you move from Slack to Google Chat Spaces at a fraction of the cost of enterprise migration tools.

What we provide:


  • 🔧 Pre-built analysis and migration scripts

  • 📊 Automated channel mapping and user migration

  • 💾 Data preservation and backup tools

  • 📋 Migration project templates and checklists

  • 🎯 Custom migration strategy consultation


Contact us today to learn how we can help accelerate your Slack to Google Chat migration while reducing costs and minimizing disruption to your team.

 
 

Sign up for our newsletter!

Email Address:

Thanks for subscribing!

Related Articles:

laptop2.png
meter_edited.png
meterVertical.png

Free Network
Performance Grader

Get an instant audit of your onsite and cloud with our Free Network Grader.

bottom of page